China Professional Wholesale Car Front Axle Drive Shaft Parts, OEM Deign Auto Shaft Drive Shaft for CZPT Honda CZPT CZPT

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

 

Brand Name

KOWA DRIVE SHAFT

Item name

OEM

Car maker

For all japanese/korean/european/american car

Moq

5pcs

Guarantee

12 months

sample

Available if have stock

Price

Send inquiry to get lastest price

BOX/QTY

1PCS/Bag 4PCS /CTNS

We have more drive shafts of models that have not been uploaded in time, such as: For CHINAMFG Mazda CHINAMFG CHINAMFG CHINAMFG Honda Nissan… Please send an inquiry and we will solve your needs, click Contact Supplier, thank you.

For Japanese Car
for TOYOTA for TOYOTA
43420-57170 43420-57180 43410-0W081 43420-0W080
43410-57120 43420-57190 43410-0W091 43420-0W090
43410-57130 43420-57120 43410-0W100 43420-0W110
43410-57150 43420-02B10 43410-0W110 43420-0W160
43410-06221 43420-02B11 43410-0W140 43420-32161
43410-06231 43420-02B60 43410-0W150 43420-33250
43410-06460 43420-02B61 43410-0W180 43420-33280
43410-06570 43420-02B62 43410-12410 43420-48090
43410-06580 43420-06221 43410-33280 43420-48091
43410-066-90 43420-06231 43410-33290 43430OK571
43410-06750 43420-06460 43410-33330 66-5245
43410-06780 43420-06490 43410-48070 66-5247
43410-06A40 43420-06500 43410-48071 43420-57150
43410-06A50 43420- 0571 0 43410-0W061 43420-0W061
43410-07070 43420-06610 43410-0W071 43420-0W071
for Acura for LEXUS
44305STKA00 66-4198 43410-06200 43410-06480
44305STKA01 66-4261 43410-06450 43410-06560
44305SZPA00 66-4262 66-5265  
44306STKA00 66-4270 for MITSUBISHI
44306STKA01 66-4271 3815A309 3815A310
44306SZPA00      
for Honda for MAZDA
44571S1571 44306S3VA61 5L8Z3A428AB GG052550XD
44011S1571 44306S3VA62 5L8Z3A428DA GG052560XE
44305S2HN50 44306S9VA51 66-2090 GG362550XA
44305SCVA50 44306S9VA71 6L8Z3A428A YL8Z3A427AA
44305SCVA51 44306SCVA50 9L8Z3A427B YL8Z3A427BA
44305SCVA90 44306SCVA51 GG032550XD YL8Z3A428AA
44305SCVA91 44306SCVA90 GG042550XD YL8Z3A428BA
44305STXA02 44306SCVA91 GG042560XG ZC32550XA
44305SZAA01 44306STXA02    
44306S2H951 44306SZAA01    
44306SZAA11 44306SZAA01RM    
44306SZAA12 66-4213    
66-4214      
for Europe Car
for VOLKSWAGEN for VOLKSWAGEN
4885712AD 7B0407271B 7E0407271G 7LA407272C
4885713AF 7B0407272 7E0407271P 7LA4 0571 2CX
4881214AE 7B0407272E 7LA407271E  
7B0407271A      
for America Car
for CHRYSLER for MERCURY
4593447AA 557180AD 4F1Z3B437AA GG322560X
4641855AA 52114390AB 5L8Z3A428DB GG362560XA
4641855AC 5273546AC 66-2249 YL8Z3A427CA
4641856AA 66-3108 9L8Z3A427C YL8Z3A427DA
4641856AC 66-3109 9L8Z3A427D YL8Z3A427EA
4882517 66-3130 GG062550XD YL8Z3A427FA
4882518 66-3131 GG062560XE YL8Z3A428CA
4882519 66-3234 GG312560X ZZDA2560X
4882520 66-3518 ZZDA2560XC ZZDA2560XA
557130AB 66-3520 for RAM
66-3552 66-3522 4885713AD 55719AB
66-3553 66-3551 4881214AD 66-3404
66-3554 66-3639 55719AA 66-3740
68193908AB 66-3641 68571398AA  
for FORD for DODGE
1F0571400 E6DZ3V428AARM 4593449AA 7B0407272A
1F0571410 E8DZ3V427AARM 4641855AE 7B0407272B
1F2Z3B436AA E8DZ3V428AARM 4641855EE 7B0407272C
2F1Z3A428CA E90Y3V427AARM 4641856AD R4881214AE
2M5Z3B437CA E90Y3V428AARM 4641856AF RL189279AA
4F1Z3B437BA F0DZ3V427AARM 4885710AC 557180AG
5M6Z3A428AA F0DZ3V428AARM 4885710AE 5170822AA
5S4Z3B437AA F21Z3B437A 4885710AF 52114390AA
66-2005 F21Z3B437B 4885710AG 5273546AD
66-2008 F2DZ3B436A 4885711AC 5273546AE
66-2571 F2DZ3B436B 4885711AD 5273546AF
66-2084 F2DZ3B437A 4885712AC 5273558AB
66-2086 F2DZ3B437B 4885712AE 5273558AD
66-2095 F4DZ3B437A 4885712AG 5273558AE
66-2101 F57Z3B436BA 4885712AH 5273558AF
66-2143 F57Z3B437BA 4885713AC 4881214AC
6S4Z3B437BA F5DZ3A427BA 4885713AG 4881214AF
8S4Z3B437A F5DZ3A428AS 4885713AI 4881214AG
9L8Z3A427A F5DZ3B426D 4885713AJ 557130AA
E6DZ3V427AARM F5DZ3B436D 5273558AG 557180AE
YF1Z3A428RS F5DZ3B437B 66-3382 557180AF
YL8Z3A428DA F5TZ3B436A 66-3511 66-3514
YS4Z3B437BB GG032560XG 66-3759 66-3564
YS4Z3B437CB GG362550X    
YF1Z3A427L      
for CHEVROLET for JEEP
257191 26062613 4578885AA 5215710AA
22791460 4578885AB 5215711AB
26011961 4578885AC 5215711AB
26571730 2657189 4720380 5273438AC
2657165 66-1401 4720381 5273438AD
26058932 66-1438 5012456AB 5273438AE
26065719 88982496 5012457AB 5273438AG
for HUMMER 5066571AA 66-3220
1571204 595716 557120AB 66-3221
15886012 66-1417 557120AC 66-3298
for CADILLAC 557120AD 66-3352
88957151 66-1416 557120AE 66-3417
66-1009 66-1430 5189278AA 66-3418
66-1415 88957150 5189279AA 66-3419

 

 

 

 

 

 

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Toyota Honda Nissan Hyundai
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Can front drive shafts be adapted for use in various automotive and industrial settings?

Front drive shafts can indeed be adapted for use in various automotive and industrial settings. While front drive shafts are commonly associated with vehicles that have front-wheel drive (FWD), all-wheel drive (AWD), or four-wheel drive (4WD) systems, they can also be modified and utilized in different applications. Here’s a detailed explanation:

1. Automotive Applications: Front drive shafts are primarily designed for automotive applications. They are commonly used in vehicles with front-wheel drive systems, where the engine’s power is transmitted to the front wheels. Additionally, front drive shafts are crucial components in AWD and 4WD vehicles, where they transfer power to both the front and rear wheels. These drive shafts are engineered to handle the torque and power requirements of different vehicle types, and they can be adapted to suit specific automotive configurations.

2. Industrial and Off-Road Applications: Front drive shafts can also be adapted for use in industrial and off-road settings. In industrial applications, such as heavy machinery or construction equipment, drive shafts can be customized to transmit power to various components or attachments. Off-road vehicles, such as trucks or SUVs used for recreational purposes or in rugged terrains, may require specialized front drive shafts with enhanced durability and load-bearing capabilities. These drive shafts can be modified to withstand the demanding conditions and torque loads encountered in such environments.

3. Customization and Retrofitting: Front drive shafts can be customized or retrofitted to meet specific requirements. In some cases, off-the-shelf drive shafts may be suitable for certain applications with minimal modifications. However, for unique or specialized applications, custom drive shafts can be designed and manufactured to exact specifications. This customization may involve adjusting the length, diameter, material, or other parameters of the drive shaft to ensure proper fitment and performance.

4. Material Selection: The choice of materials for front drive shafts can also be tailored to suit different settings. While steel is commonly used for its strength and durability, other materials such as aluminum or carbon fiber may be preferred in applications where weight reduction is critical, such as high-performance vehicles or aerospace industries. The material selection can be adjusted based on factors like load requirements, operating conditions, and desired performance characteristics.

5. Design Considerations: When adapting front drive shafts for various settings, certain design considerations come into play. Factors such as torque requirements, operating angles, vibration dampening, and environmental conditions need to be taken into account. The drive shaft’s design can be optimized to ensure efficient power transmission, balance, and reliability in the specific application.

By considering the necessary modifications, customization, material selection, and design considerations, front drive shafts can be adapted and utilized in various automotive and industrial settings. Whether it’s for different types of vehicles, off-road applications, or specialized industrial machinery, front drive shafts can be tailored to meet the unique requirements of each setting.

pto shaft

Are there any emerging trends in front drive shaft technology, such as lightweight materials?

Front drive shaft technology is continually evolving, and there are indeed emerging trends aimed at improving performance and efficiency. One notable trend is the use of lightweight materials in front drive shaft construction. Here’s a detailed explanation:

1. Lightweight Materials: Manufacturers are increasingly incorporating lightweight materials, such as aluminum, carbon fiber, and high-strength steel alloys, in front drive shafts. These materials offer several advantages. Firstly, they reduce the overall weight of the front drive shaft, which helps improve fuel efficiency and vehicle performance. A lighter front drive shaft reduces the rotational mass, allowing the engine to transfer power more efficiently to the wheels. Additionally, lightweight materials contribute to better handling characteristics, as they reduce the unsprung weight of the vehicle.

2. Advanced Manufacturing Techniques: Emerging trends in front drive shaft technology also include the utilization of advanced manufacturing techniques. Techniques like hydroforming, which involves shaping metal using fluid pressure, and composite manufacturing processes, such as filament winding, enable the production of front drive shafts with complex geometries and optimized strength-to-weight ratios. These techniques allow manufacturers to create front drive shafts that are lighter, stronger, and more efficient.

3. Improved Durability and Performance: Front drive shaft technology is evolving to enhance durability and performance. Manufacturers are exploring innovative designs and materials to increase the torque capacity and lifespan of front drive shafts. This includes the use of reinforced splines, constant velocity (CV) joints with improved articulation angles, and advanced lubrication systems. These advancements help front drive shafts withstand higher torque loads, reduce vibrations, and deliver smoother power transfer, resulting in improved performance and reliability.

4. Integration with Hybrid and Electric Powertrains: As hybrid and electric vehicles become more prevalent, front drive shaft technology is adapting to integrate with these powertrain systems. In hybrid vehicles, front drive shafts may be coupled with electric motors to provide additional power and torque to the front wheels. Additionally, front drive shafts in electric vehicles may incorporate regenerative braking systems, which can capture and store energy during deceleration, further enhancing overall efficiency.

5. Integration of Electronic Control Systems: Front drive shaft technology is becoming more integrated with electronic control systems. Electronic control units (ECUs) and sensors are used to monitor and optimize torque distribution, traction control, and stability systems. By integrating front drive shafts with these electronic control systems, vehicle performance and safety can be enhanced, allowing for more precise torque management and improved stability in various driving conditions.

These emerging trends in front drive shaft technology, such as the use of lightweight materials, advanced manufacturing techniques, improved durability and performance, integration with hybrid and electric powertrains, and electronic control systems, aim to enhance overall vehicle performance, efficiency, and reliability. As technology continues to advance, we can expect further innovations in front drive shaft design and construction, leading to even more optimized and capable drivetrain systems.

pto shaft

How do front drive shafts handle variations in torque, speed, and alignment?

Front drive shafts are designed to handle variations in torque, speed, and alignment to ensure efficient power transmission and optimal performance. Here’s an explanation of how front drive shafts handle these variations:

1. Variations in Torque: Front drive shafts are built to withstand variations in torque, which is the rotational force generated by the engine. As the engine output changes during acceleration, deceleration, or varying loads, the front drive shafts flex and rotate to accommodate these torque fluctuations. The design of the drive shaft, including its material composition, length, diameter, and thickness, is engineered to provide the necessary strength and flexibility to handle the torque variations without failure.

2. Variations in Speed: Front drive shafts also handle variations in speed, which occur as the vehicle’s speed changes during acceleration, deceleration, or different driving conditions. As the rotational speed of the drive shaft increases or decreases, it flexes and rotates accordingly to maintain the required power transmission. The drive shaft’s design, including its length, weight distribution, and balancing, ensures smooth operation across the range of speeds encountered during normal driving.

3. Variations in Alignment: Front drive shafts are designed to accommodate variations in alignment between the engine/transmission and the wheels. As the suspension system compresses, extends, or experiences movements due to road irregularities, the drive shafts flex and adjust their angle and length to maintain proper alignment. This flexibility allows the drive shafts to transmit torque effectively even when the wheels are moving up and down or experiencing steering movements.

4. Flexible Couplings: Front drive shafts often incorporate flexible couplings at the ends where they connect to the transmission and wheels. These flexible couplings, such as CV joints (constant velocity joints), allow for angular movement and compensate for variations in alignment. CV joints use ball bearings and a lubricated housing to maintain a constant velocity and smooth power transmission even at different angles.

5. Balancing: Proper balancing of the front drive shafts is crucial to minimize vibrations and ensure smooth operation. Imbalances in the drive shaft can lead to unwanted vibrations, noise, and accelerated wear on the drivetrain components. Balancing involves adding weights to the drive shaft to counterbalance any uneven weight distribution, ensuring that it rotates without causing excessive vibrations or stress on the drivetrain system.

Overall, front drive shafts are designed to handle variations in torque, speed, and alignment by incorporating flexible materials, joints, and balancing techniques. These design features enable the drive shafts to effectively transmit power while accommodating the dynamic movements and forces experienced during vehicle operation.

China Professional Wholesale Car Front Axle Drive Shaft Parts, OEM Deign Auto Shaft Drive Shaft for CZPT Honda CZPT CZPT  China Professional Wholesale Car Front Axle Drive Shaft Parts, OEM Deign Auto Shaft Drive Shaft for CZPT Honda CZPT CZPT
editor by CX 2023-10-21